Light pulses do not induce c-fos or per1 in the SCN of hamsters that fail to reentrain to the photocycle.

TitleLight pulses do not induce c-fos or per1 in the SCN of hamsters that fail to reentrain to the photocycle.
Publication TypeJournal Article
Year of Publication2004
JournalJournal of biological rhythms
Volume19
Issue4
Pagination287-97
ISSN0748-7304
Abstract

Circadian activity rhythms of most Siberian hamsters (Phodopus sungorus sungorus) fail to reentrain to a 5-h phase shift of the light-dark (LD) cycle. Instead, their rhythms free-run at periods close to 25 h despite the continued presence of the LD cycle. This lack of behavioral reentrainment necessarily means that molecular oscillators in the master circadian pacemaker, the SCN, were unable to reentrain as well. The authors tested the hypothesis that a phase shift of the LD cycle rendered the SCN incapable of responding to photic input. Animals were exposed to a 5-h phase delay of the photocycle, and activity rhythms were monitored until a lack of reentrainment was confirmed. Hamsters were then housed in constant darkness for 24 h and administered a 30-min light pulse 2 circadian hours after activity onset. Brains were then removed, and tissue sections containing the SCN were processed for in situ hybridization. Sections were probed with Siberian hamster c-fos and per1 mRNA probes because light rapidly induces these 2 genes in the SCN during subjective night but not at other circadian phases. Light pulses induced robust expression of both genes in all animals that reentrained to the LD cycle, but no expression was observed in any animal that failed to reentrain. None of the animals exhibited an intermediate response. This finding is the first report of acute shift in a photocycle eliminating photosensitivity in the SCN and suggests that a specific pattern of light exposure may desensitize the SCN to subsequent photic input.

URLhttp://journals.sagepub.com/doi/abs/10.1177/0748730404266771?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
DOI10.1177/0748730404266771
Short TitleJ Biol Rhythms
X
Enter your linkblue username.
Enter your linkblue password.
Secure Login

This login is SSL protected

Loading