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Microbial nanowires for bioenergy applications
Nikhil S Malvankar1,2 and Derek R Lovley2

Microbial nanowires are electrically conductive filaments that

facilitate long-range extracellular electron transfer. The model

for electron transport along Shewanella oneidensis nanowires

is electron hopping/tunneling between cytochromes adorning

the filaments. Geobacter sulfurreducens nanowires are

comprised of pili that have metal-like conductivity attributed to

overlapping pi–pi orbitals of aromatic amino acids. The

nanowires of Geobacter species have been implicated in direct

interspecies electron transfer (DIET), which may be an

important mode of syntrophy in the conversion of organic

wastes to methane. Nanowire networks confer conductivity to

Geobacter biofilms converting organic compounds to

electricity in microbial fuel cells (MFCs) and increasing

nanowire production is the only genetic manipulation shown to

yield strains with improved current-producing capabilities.

Introducing nanowires, or nanowire mimetics, might improve

other bioenergy strategies that rely on extracellular electron

exchange, such as microbial electrosynthesis. Similarities

between microbial nanowires and synthetic conducting

polymers suggest additional energy-related applications.
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Introduction
Several bioenergy strategies require that microorganisms
exchange electrons with their external environment
(Figure 1). For example, effective metabolism of alcohols
and fatty acids, which is essential for the anaerobic diges-
tion of organic wastes to methane, requires an electron
exchange between the microorganisms oxidizing these
substrates and the methanogens that accept the electrons
for the reduction of carbon dioxide to methane [1!!]. The
conversion of organic wastes to electricity in microbial fuel
cells (MFCs) requires that microorganisms transfer elec-
trons to electrodes [2,3]. Microbe-electrode exchange is
also required for processes such as electromethanogenesis

and microbial electrosynthesis in which microorganisms
use electrons derived from electrodes for the reduction of
carbon dioxide to methane or multi-carbon fuels [4,5].

One mechanism for external electron exchange is for
microorganisms to reduce an electron acceptor to gener-
ate an electron carrier molecule that can serve as an
electron donor for the electron-accepting microbe or
electrode (Figure 1). Interspecies H2 transfer, in which
the electron-donating organism reduces protons to H2 and
the electron-accepting organism oxidizes the H2 with the
reduction of an electron acceptor, is an important example
of this form of electron exchange [1!!]. Organic electron
shuttles, either produced by cells (i.e., flavins, phena-
zines, cysteine) or commonly found in the extracellular
environment (i.e., humic substances) can facilitate elec-
tron transfer to electrodes and interspecies electron trans-
fer [2,6,7!!]. These electron shuttles, as well as terminal
electron acceptors such as metals or electrodes, may be
reduced by outer-surface redox-active molecules, such as
c-type cytochromes [8–11]. Conductive materials like
magnetite and granular activated carbon (GAC) can also
promote interspecies electron exchange [6,12,13].

Another, more controversial, mechanism for extracellular
electron exchange is via electrically conductive filaments,
collectively referred to as microbial nanowires [2,14]. The
purpose of this review is to summarize the recent litera-
ture on microbial nanowires and their potential role in
bioenergy applications.

Nanowire diversity in microbes and
conduction mechanism
Microbial nanowires have been implicated in extracellu-
lar electron transfer in many organisms, but have only
been studied in detail in two microorganisms, Shewanella
oneidensis [15] and Geobacter sulfurreducens [16]. Studies to
date have suggested that the nanowire function in these
two organisms is remarkably different (Figure 2).

Shewanella oneidensis nanowires
The current model for electron conduction along S.
oneidensis nanowires is electron hopping (Box 1) between
cytochromes (Figure 2a) adorning a filament of as yet
unspecified composition [15,17,18,19!!,20,21]. The initial
evidence suggesting an electron hopping mechanism was
the finding that a strain that lacked genes for the outer
surface cytochromes MtrC and OmcA produced non-
conductive filaments [15,18]. A theoretical model indi-
cated that multistep hopping model along chains of
cytochromes could account for conductivity of S. oneiden-
sis pili, assuming that the cytochromes are aligned along
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the filament with spacing within 0.7 nm, which would
enable sufficient electronic coupling [19!!]. However,
association of cytochromes with the S. oneidensis filaments,
especially at a density high enough to permit cytochrome-
to-cytochrome electron hopping/tunneling, has yet to be
demonstrated [22!!]. Theoretical considerations suggest
that, even if cytochromes could be closely packed (<1 nm
separation) along the filaments, the high conductivities
reported [18] are likely to have been an artifact of sample
treatment [22!!]. This is an important consideration given
the suggestion that the filaments that have been observed
are in fact comprised of extracellular polymeric material
that collapses into filaments during sample preparation
[23!]. Thus, determining the actual composition of S.
oneidensis nanowires and documenting the presence of
cytochromes and their spacing along the filaments should
be high priorities in future research.

Geobacter sulfurreducens nanowires
The nanowires of G. sulfurreducens are type IV pili [16].
The available evidence suggests that the pili have metal-
like conductivity (Box 1), which can be attributed to
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Mechanisms for extracellular cell-to-cell electron exchange in methanogenic digesters. Intercellular electron carriers can be reduced and oxidized
within cells and diffuse through the extracellular environment between electron-donating and electron-accepting microbes, such as in interspecies H2

transfer. Cells can forge biological electrical connections, with components such as conductive pili as shown here. Alternatively, cells can attach to
conductive materials, such as granular activated carbon, which serves as a conduit for electron transfer between electron-donating and electron-
accepting cells. Similar extracellular electron transfer mechanisms are possible in which an electrode is substituted for either the electron-donating or
electron-accepting microorganism. A diversity of compounds can potentially substitute for H2 as the electron shuttle, some of which are extracellularly
reduced/oxidized. Various redox-active proteins, such as c-type cytochromes, may facilitate electron exchange between pili and electron acceptors/
donors or may directly serve as biological electrical contacts.

Figure 2
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Two contrasting models of electron flow along microbial nanowires. The
electron hopping model for filaments of Shewanella oneidensis (a) and
the metallic-like conduction for pili of Geobacter sulfurreducens (b). In
the electron hopping mechanism, charges hop from cytochrome to
cytochrome (shown in red). In metallic-like conduction, delocalized
charges (shown as black dots) are spread across the entire filament.
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electron delocalization (Figure 2b) due to overlapping pi–
pi orbitals of aromatic amino acids. Although metal-like
conductivity is a well-known phenomenon in synthetic
organic conducting polymers [24], G. sulfurreducens pili are
the first biological protein filaments found to have this
property [14,25!!,26].

Multiple lines of evidence have ruled out the alternative
hypothesis [27–29] that the conductivity of G. sulfurredu-
cens pili can be attributed to electron hopping between
pili-associated cytochromes, in a manner similar to that
proposed for S. oniedensis nanowires. Cytochromes are
associated with G. sulfurreducens nanowires [30], but
atomic force microscopy [31] has demonstrated that their
spacing (100–200 nm) is greater than the ca. 1–2 nm
spacing that is required for cytochrome-to-cytochrome
electron hopping (Box 1). The distance between the
cytochromes is also greater than that required for a
proposed ‘stepping stone mechanism’ in which cyto-
chromes would serve to bridge electron transfer between
aromatic-rich regions of the pili [28]. Furthermore, dena-
turing the cytochromes associated with the pili does not
diminish their conductivity [25!!]. Scanning tunneling
microscopy [32] and electrostatic force microscopy (N.S.
Malvankar et al. ‘Visualization of charge propagation
along individual pili proteins using ambient electrostatic
force microscopy’, manuscript submitted) have also
suggested that the conductivity of G. sulfurreducens nano-
wires cannot be attributed to cytochromes.

G. sulfurreducens nanowires are comprised of PilA, a
protein with homology to the PilA of other gram-negative

bacteria that produce type IV pili from the assembly of
the PilA monomer [33]. The N-terminus of the PilA
sequence of G. sulfurreducens and other organisms is highly
conserved. However, the PilA sequence of G. sulfurredu-
cens differs from that of other microorganisms outside the
genus Geobacter in that the carboxyl terminus is highly
truncated. The pili of Pseudomonas aeruginosa, which has
the longer carboxyl PilA sequence, have low conductivity
[16], and expressing the P. aeruginosa PilA in G. sulfurre-
ducens yielded poorly conductive pili, even though G.
sulfurreducens properly localized cytochromes on the P.
aeruginosa-PilA pili [34].

Specific aromatic amino acids in the carboxyl terminus of
the PilA sequence of G. sulfurreducens appear to confer
conductivity [35!]. Substituting an alanine for each of the
five most distal aromatic amino acids in the carboxyl
terminus of PilA led to the expression of pili with properly
localized cytochromes, but with greatly diminished con-
ductivity [35!]. The strain producing these modified pili
was no longer able to effectively carry out extracellular
electron transfer functions, such as current production
and Fe(III) oxide reduction [35!].

The necessity for aromatic amino acids for conductivity,
and the truncated carboxy terminus that is likely to allow
these aromatic amino acids from separate PilA monomers
to establish close contact, is consistent with the concept
[14,25!!] that overlapping pi–pi orbitals in the pili struc-
ture enable metal-like conductivity. Changes in conduc-
tivity in response to temperature and proton doping
followed patterns expected for a material with metal-like
conductivity and were inconsistent with electron hop-
ping/tunneling [25!!].

Attempts to elucidate the conductivity mechanism for G.
sulfurreducens pili from modeling based on the PilA struc-
ture [36,37] have also suggested that aromatic amino acids
are likely to be important in electron transfer along the
pili, but have not yielded a predicted filament structure in
which electrons would be transported via metal-like
conductivity. Structural studies on assembled filaments
are needed to further evaluate the metal-like conductivity
hypothesis [38].

Bioenergy strategies to which microbial
nanowires may contribute
Anaerobic digestion
Anaerobic digestion is a well-proven strategy for extract-
ing energy from organic wastes in the form of methane
[39]. Microorganisms closely related to known Geobacter
species are abundant in some anaerobic digesters [40–42]
in which they are likely to be functioning as syntrophs
[43]. The capacity for syntrophic growth has been demon-
strated in G. metallireducens, which like G. sulfurreducens
requires pili for long-range extracellular electron transfer
[44]. Adaptive evolution, transcriptomic, and genetic
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Box 1 Mechanisms of conductivity

There are three primary modes for electron flow in materials [79].
These are: tunneling, hopping, and delocalization (i.e., metal-like
conductivity). In both tunneling and hopping electrons are associated
with discrete electron carriers and the electrons can traverse one or
more sites to migrate over large distances (Figure 2a). The main
difference between tunneling and hopping is the involvement of the
nuclear motion. Tunneling is a quantum mechanical phenomenon in
which an electron overcomes the energy barrier at the conductor/
insulator interface due to the wave nature of the electrons, allowing
the electron to penetrate the barrier [79]. Tunneling can be a single
step event or it can involve a series of multiple consecutive steps. In
hopping the electron transport involves a physical displacement of
the redox molecules due to diffusion and electrons hop from one
reduced molecule to an adjacent oxidized molecule. In hopping,
there is no electron transfer until the thermal motion of nuclei yields a
favorable molecular geometry which permits electron motion over
the barrier by rearrangement of the molecule. In contrast, in tunneling
electrons move through the barrier due to the finite probability of
finding the electron on the other side of barrier, without requiring
nuclear motion [80]. Metallic conductivity is substantially different
than hopping or tunneling. Instead of electrons being localized in
individual molecules, electrons are delocalized along a chain of
molecules and electrons are free to move throughout the material
[81] (Figure 2b). Metallic conductivity arises due to a process of
electron delocalization or spreading of electron wave functions [79].

Current Opinion in Biotechnology 2014, 27:88–95 www.sciencedirect.com
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approaches demonstrated in proof-of-concept studies that
G. metallireducens and G. sulfurreducens exchange electrons
via pili in electrically conductive aggregates during syn-
trophic growth [45–47].

A similar direct interspecies electron transfer (DIET)
appeared to be taking place within aggregates in
anaerobic digesters in which Geobacter species were the
predominant bacteria and Methanosaeta species were the
most abundant methanogens [41]. The aggregates had a
metal-like conductivity, consistent with conductivity via
Geobacter pili [41]. G. metallireducens donated electrons to
the digester isolate Methanosaeta harundinacea in defined
co-culture aggregates, but a strain of G. metallireducens in
which the gene for PilA had been deleted could not
function in this manner [48!!]. Although it was previously
thought that Methanosaeta species specialized in the con-
version of acetate to methane, M. harundinacea used
electrons derived from DIET to reduce carbon dioxide
to methane, and metatrascriptomic analysis suggested
that Methanosaeta species within an anaerobic digester
were also actively reducing carbon dioxide [48!!]. These
previously unrecognized capabilities of Methanosaeta
species have implications beyond anaerobic digestion
because Methanosaeata is considered to be the most pro-
digious methane producer on earth [48!!].

The diversity of microorganisms capable of participating
in DIET and its prevalence in methanogenic environ-
ments is as yet unknown. Pelobacter carbinolicus, which is
in the same phylogenetic family as G. metallireducens, was
incapable of DIET, instead relying on H2 or formate as
the interspecies electron carrier [49]. Other intensively
studied syntrophic organisms also appear to have evolved
to specialize in interspecies H2 or formate transfer [1!!] as
have some methanogens [48!!]. The methanogen Metha-
nasarcina barkeri can grow via DIET or H2 transfer (A.-E.
Rotaru et al., unpublished data).

The finding that methanogens such as Methanosaeata and
Methanosarcina  species have evolved the capacity to
accept electrons via DIET suggests that DIET offers
a competitive advantage in some methanogenic environ-
ments and there is circumstantial evidence that DIET
may enhance the function of anaerobic digesters. For
example, GAC is often added to anaerobic digesters to
improve anaerobic digestion and GAC promotes DIET
[6]. GAC is much more electrically conductive than pili
and can serve as an electrical conduit for syntrophic
growth, even alleviating the need for pili for DIET
[6]. Conductive iron minerals may serve a similar func-
tion [12]. Carbon cloth stimulated anaerobic digestion
[50] and it seems likely that this response might be
attributed to syntrophs and methanogens plugging into
the conductive cloth matrix. Further research into strat-
egies for favoring DIET in anaerobic digesters seems
warranted.

Microbial fuel cells
MFCs are a potential alternative to anaerobic digestion
for harvesting energy from organic wastes [3]. MFCs
already have applications as sensors, powering electronic
monitoring devices, and bioremediation [51!!,52]. How-
ever, at present, the current densities of MFCs are too low
to permit this technology to be competitive with
anaerobic digestion [39].

The only proven strategy for creating microbial strains
with the capacity for increased current densities is to
promote nanowire production [53–55]. G. sulfurreducens
strains with more pili produce more conductive biofilms,
and more conductive anode biofilms generate higher
current densities [54]. Biofilm conductivity permits cells
at distances of up to 400 mm from the anode surface to
remain metabolically active and contribute to current
production [56!!,57,58]. For example, G. sulfurreducens
strain KN400, which was a rare variant [59] in a culture
of G. sulfurreducens strain DL-1, was selected for its
superior current-producing capability [53]. KN400 pro-
duces more pili than DL-1 [53], as proven by a threefold
greater abundance of PilA protein [25!!], and its biofilms
are fivefold more conductive [25!!]. These findings are
consistent with the concept that pili confer conductivity
to G. sulfurreducens biofilms, which have a similar metal-
like conductivity [14,25!!]. Genetically altering a regu-
latory switch for pili production also enhanced biofilm
conductivity and current production [55]. As previously
reviewed [14], G. sulfurreducens naturally strives to pro-
duce more pili when using an electrode as an electron
acceptor by greatly upregulating its PilA gene expression.

In searching for strategies to further increase current
output it is important to consider alternatives other than
manipulating pili density. For example, it has been pro-
posed that electron transport through current-producing
biofilms is the result of electron hopping/tunneling be-
tween c-type cytochromes dispersed throughout the bio-
film matrix [27,29,60–63]. If so, it might be expected that
increasing the density of extracellular cytochromes in
biofilms would increase conductivity and current pro-
duction. However, just the opposite has been observed.
In fact, the best strategy for generating new strains of G.
sulfurreducens with increased capacity for current pro-
duction has been to delete genes encoding outer-surface
c-type cytochromes [25!!,54].

The likely reason that the cytochrome model lacks prac-
tical utility for enhancing current output is that its de-
velopment was based on a flawed experimental approach.
The model is based on an inference of conductivity from
the oxidation and reduction of cytochromes within the
biofilm rather than direct conductivity measurements.
This approach neglects the fact that most of the G.
sulfurreducens cytochromes are localized within the cell
and that cytochromes both within and outside the cell are
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oxidized or reduced in response to electrochemical
manipulations regardless of the route of electron conduc-
tion through the biofilm [31]. In fact, the formal potential
of G. sulfurreducens biofilms corresponds with that of the
periplasmic cytochrome PpcA, the most abundant cyto-
chrome in G. sulfurreducens [31]. The apparent ‘diffusive
behavior’ of electrons through G. sulfurreducens biofilms
(see [64] for a review) primarily reflects the kinetics of
oxidation/reduction of cytochromes within cells, rather
than electron transport through the biofilm.

Thus, at the practical level the debate over mechanisms
for long-range electron transport through G. sulfurreducens
biofilms has been resolved. The approach that has gener-
ated strains of G. sulfurreducens with enhanced capacity
for current production has been to reduce expression of
outer surface c-type cytochromes and increase expression
of pili [25!!,31,53,55]. However, G. sulfurreducens requires
the outer surface cytochrome OmcZ [65] to facilitate
electron exchange at the biofilm/anode interface [11].
It has yet to be determined whether this final electron
transfer to anodes can be improved through genetic
manipulation.

A wide diversity of organisms other than Geobacter species
are capable of oxidizing organic compounds with electron
transfer to electrodes [51!!]. However, Thermincola ferria-
cetica is the only other organism that has been shown to
produce the thick, conductive biofilms that are necessary
for high current densities [66!!]. For example, S. oneidensis
relies on flavin electron shuttles rather than nanowires as
its primary mode of electron transport to electrodes [2]
and the slow diffusive flux of shuttles limit current
densities [57].

Microbial electrosynthesis — the electric
economy meets synthetic biology
Another potential bioenergy application of microbe-elec-
trode exchange is microbial electrosynthesis, a process in
which microorganisms accept electrons from an electrode
for the reduction of carbon dioxide to multi-carbon fuels
or other organic commodities [4,67,68]. When solar
energy is the source of electrical power microbial electro-
synthesis is an artificial form of photosynthesis:

CO2 þ H2O #!Solar energy
Organic products þ O2

that has a number of potential advantages as a sustainable
practice over strategies that rely on the conversion of
biomass to fuels [4,69]. Solar panels harvest solar energy
much more efficiently than plants; the solar energy col-
lected is channeled directly to the production of desired
products rather than biomass, reducing water usage and
waste production; arable land that could be devoted to
food production is not required for electrosynthesis; and
the environmental degradation associated with intensive
biomass production is avoided.

Although proof-of-concept studies have demonstrated
the feasibility of microbial electrosynthesis with aceto-
genic bacteria as the catalyst [67,68,70], volumetric rates
of product formation are low. This can be attributed to
sparse biofilm formation on cathodes. Some improve-
ments in biofilm density were achieved with modifi-
cations of cathode materials [71], and membrane-
spanning compounds may aid electrode-to-microbe elec-
tron transfer [72], but thick conductive biofilms, compar-
able to the conductive anode biofilms of G. sulfurreducens
[56!!] or natural communities [73], have yet to be
achieved.

A potential solution is to employ microorganisms that
produce conductive filaments as the electrosynthesis
catalysts. However, Geobacter species lack the Wood–
Ljungdahl pathway, which is likely to be the most effec-
tive and efficient of the known microbial pathways for
generating extracellularly released organic products from
carbon dioxide reduction [4]. Clostridium ljungdahlii,
which possesses the Wood–Ljungdahl pathway is an
attractive chassis for electrosynthesis because it is geneti-
cally tractable [74]. Although C. ljungdahlii appears to
directly accept electrons from cathodes [67], it only forms
monolayer biofilms. This is similar to another gram-
positive microbe, Thermincola potens, which is capable
of direct electron transfer to electrodes via extracellular
c-type cytochromes, but only cells in contact with the
anode appear to be active [75!,76]. However, the closely
related Thermincola ferriacetica can form thick biofilms that
are potentially conductive via nanowires [66!!], demon-
strating that the capacity for long-range electron transport
can be found in gram-positive microbes. This is encoura-
ging because it may be easier to introduce the capacity to
express nanowires into a chassis, such as C. ljungdahlii that
already possesses the Wood–Ljungdahl pathway, than to
introduce the Wood–Ljungdahlii pathway and associated
energy conservation mechanisms into a microbe, such as
G. sulfurreducens, that has the ability to produce conduc-
tive biofilms.

Conclusions
The limited numbers of studies on microbial nanowires to
date have demonstrated that long-range electron conduc-
tion via proteinaceous microbial filaments is possible and
that this form of extracellular electron transport is import-
ant in several anaerobic bioenergy processes. Synthetic
conducting polymers, which also rely on pi–pi stacking for
electron conduction, are being increasing employed in
energy-related applications such as electronic circuits,
light-emitting displays, and solar cells [24]. Microbial
nanowires provide a model for how similar materials
might be sustainably produced from inexpensive, renew-
able feedstocks. The ability of conductive pili of G.
sulfurreducens to wire cells together to form biofilms with
supercapacitor [77] and transistor properties [25!!] has
already been demonstrated. The increase in the power
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output of MFCs with a simple genetic manipulation that
increased nanowire production [55] demonstrates the
possibility of enhancing processes not only with more
nanowires, but also potentially with nanowires genetically
engineered for higher conductivity or with artificial
materials that function as nanowire mimetics.

Such practical applications will benefit from additional
basic research. The study of Shewanella and Geobacter
nanowires has already suggested that different species
produce nanowires that have different mechanisms for
electron conduction. Therefore, it is important to further
explore the diversity of the microbial world for other
nanowires. Many microbial communities might exchange
electrons via nanowires not only for anaerobic respiration,
but also potentially as an electrical signal that is more
specific and direct than alternatives, such as quorum
sensing molecules. Likely places to find such direct
electrical connections include the wide diversity of con-
sortia that establish contact to syntrophically oxidize
organic substrates; communities anaerobically oxidizing
methane may be a good place to start [78]. The potential
of gut microorganisms or symbionts within protozoa elec-
trically interacting with their eukaryotic hosts via nano-
wires is another intriguing possibility. These surveys of
nanowires in the natural world should be coupled with
further structural and biophysical investigations of nano-
wires in order to better understand the mechanisms of this
amazing biological phenomenon.
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