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Electrobiocommodities: powering microbial production of fuels
and commodity chemicals from carbon dioxide with electricity

Derek R Lovley and Kelly P Nevin

Electricity can be an energy source for microbially catalyzed
production of fuels and other organic commodities from carbon
dioxide. These electrobiocommodities (E-BCs) can be
produced directly via electrode-to-microbe electron transfer or
indirectly with electrochemically generated electron donors
such as H, or formate. Producing E-BCs may be a more
efficient and environmentally sustainable strategy for
converting solar energy to biocommodities than approaches
that rely on biological photosynthesis. A diversity of microbial
physiologies could potentially be adapted for E-BC production,
but to date acetogenic microorganisms are the only organisms
shown to covert electrically generated low potential electrons
and carbon dioxide into multi-carbon organic products with
high recovery of electrons in product. Substantial research and
development will be required for E-BC commercialization.
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Introduction

Electrobiocommodities (E-BCs) are fuels or other organic
commodities that microorganisms produce from carbon
dioxide with the aid of electrical energy. The expected
movement from an oil economy to an electric economy [1]
is increasingly focusing attention on E-BCs.

When powered with solar technologies the production of
E-BCs can be an artificial form of photosynthesis, proceed-
ing via the same overall reaction as biological photosyn-
thesis in which carbon dioxide and water are converted to
organic compounds with oxygen as a byproduct [2,3].
However, E-BC production has the potential to be much
more efficient in converting solar energy and carbon diox-
ide to desired products and to be more environmentally
sustainable. For example, in one E-BC strategy, known
as microbial electrosynthesis [4°°,5], microbial biofilms
growing on electrodes directly accept electrons from

electrodes for the reduction of carbon dioxide to organic
products that are excreted from the cells. This is more
efficient than processes based on biological photosyn-
thesis. One reason for this is that solar technologies are
more effective in capturing solar energy than biological
photosynthesis [6]. Furthermore, direct production and
excretion of desired organic products with microbial
electrosynthesis alleviates the need for the additional
energy and water inputs as well as the waste generation
associated with processing biomass to products [2,3].
Additional advantages are that E-BC processes do not
compete with food production for high quality land,
require a much smaller land area than biomass pro-
duction, are feasible in extreme and remote environ-
ments inhospitable for intensive biomass production,
and avoid the extensive environmental degradation
associated with intensive production of biomass [2,7].

E-BC production is a subset of a broader growing interest
in producing fuels and chemicals via autotrophic
microbial processes [8°%,9°°]. For example, limitations
on speed and efficiency of converting complex biomass
to simpler precursors that can be biologically converted
into fuels and commodities suggest that a more effective
strategy may be to generate syngas from organic material,
followed by microbial conversion of the syngas to desired
products [10,11]. Research in the area of syngas fermen-
tations is also applicable to E-BC production because
syngas microorganisms may also be good E-BC catalysts.

This review summarizes some of the most recent con-
cepts for powering microbial production of fuels and other
organic commodities with electrical energy and research
into the development and optimization of this approach.

Feeding microorganisms electrons with
electrical energy

There are several ways that electrical energy can be
used to provide microbes with low-potential electrons
that can power microbial reduction of carbon dioxide
as well as cell growth and maintenance (Figure 1). As
previously reviewed [2,12], early studies employed
organic molecules, such as neutral red that can function
as electron shuttles, accepting electrons from electrodes
and then donating electrons to electron carriers in the
cell. However, this approach is less favored now because
of the added cost, chemical instability, and toxicity of
some of the most effective organic shuttles, as well as
the complications their presence adds to recovering
organic products.
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Schematic of approaches to microbial production of organic commodities from carbon dioxide with electrical energy. Electrons are derived from water
at the anode as shown, or in special cases may be derived from reduced sulfur or organic wastes. Electrical energy is applied to lower the potential of
the electrons delivered at the cathode. Microorganisms capable of microbial electrosynthesis can directly accept electrons from the cathode for the
reduction of carbon dioxide to organic products that are excreted from the cell. Alternatively, the appropriate electron acceptors can be abiotically
reduced at the anode surface to produce H,, formate, or ammonia. H, or formate can serve as electron donors for anaerobic carbon dioxide reduction
to excreted organic products. Aerobic processes must be shielded from the cathode to prevent reduction of oxygen, which wastes electrons and
generates reactive oxygen species that are toxic to microbes. Major constituents are shown but stoichiometrically balanced reactions are not

provided.

Another possibility is to electrochemically generate
traditional electron donors for microbial respiration such
as H,, formate, ammonia, sulfide, or Fe(Il) [7,13°,14°].
The redox potential of H, and formate is low enough for
microorganisms to gain energy to support growth from the
direct reduction of carbon dioxide to organic compounds
that are useful fuels or commodities (Figure 1). In con-
trast, other potential electron donors such as ammonia,
sulfide, and Fe(Il) require an electron acceptor, such as
oxygen, with a potential higher than that of carbon
dioxide to support cell growth, which as described below,
can add inefficiencies and require physical separation
between the site of electrochemical electron donor gener-
ation and microbial electron donor consumption.

Alternatively, electrons can be directly provided to micro-
organisms, known as electrotrophs [2], which can couple
direct electron consumption to the reduction of carbon
dioxide [4°%,5]. This is potentially the most direct and
efficient strategy for producing biocommodities with
electrical energy. However, this is a relatively new con-
cept [4°°] and is in the infancy of development.

Water is the most abundant, inexpensive potential source
of electrons for producing E-BCs. Sulfide and organic
wastes are potential alternatives and have the advantage
that electrons can be recovered at a lower potential,
requiring less electrical energy to provide electrons at a
low potential for production of H, or direct electron
feeding [12]. However, sources of sulfide and organic
wastes are more limited and microbial catalysts are
required for effective recovery of the available electrons
[12,15], complicating reactor design.

Candidate microorganisms for production of
electrobiocommodities

Methanogens

Avery direct E-BC strategy is conversion of carbon dioxide
into methane. Methane is an excellent fuel and its low
solubility facilitates separation. Methanogenic microorgan-
isms can effectively use H; or electrochemically reduced
methyl red as an electron donor for methane production
[16°,17,18]. It has also been proposed that methanogens
can directly accept electrons from electrodes, but in each
of these studies there was also significant potential for

Current Opinion in Biotechnology 2013, 24:385-390

www.sciencedirect.com



Electrobiocommodities: microbial reduction of carbon dioxide with electrical energy Lovley and Nevin 387

electrochemical H, production [16°,17,18,19°°,20]. Recent
evidence has suggested that some methanogens might
directly accept electrons from other organisms through
biological or mineral electrical contacts [21-23], consistent
with the potential for methanogens to make extracellular
electrical contacts. Providing electrons with electrodes in
anaerobic digesters can increase methane yields, upgrading
the quality of gas produced [24]. Difficulties in metaboli-
cally engineering methanogens might limit expanding the
scope of E-BCs beyond methane for which methanogens
might be considered as catalysts.

Acetogenic microorganisms

Acetogenic microorganisms are an attractive catalyst for
the conversion of carbon dioxide to a diversity of multi-
carbon organic products [8°°,9°°] that might have greater
market value than methane. In natural environments
acetogens reduce carbon dioxide to acetate with H; as
the electron donor via the Wood-Ljungdahl pathway,
which is the most energetically efficient known pathway
for the reduction of carbon dioxide to organic commod-
ities with H, as the electron donor [25°°]. The Wood-
Ljungdahl pathway is also the only autotrophic carbon
fixation pathway that can be coupled with energy con-
servation [26]; it is a form of anaerobic respiration. This is
an important consideration when developing self-sustain-
ing systems for E-BC production. Furthermore, energy
yield from the Wood-Ljungdahl pathway is low and ca.
95% of the carbon and electron flow during H, oxidation
coupled to carbon dioxide reduction is diverted to pro-
duction of small organic endproducts excreted from the
cell, rather than production of biomass [25°°]. Thus,
recovery of energy inputs in desired products is high.

Acetate can be an important commodity and precursor in
some chemical syntheses [9°°]. Under the appropriate
conditions some acetogens will produce high titers of
ethanol rather than acetate and in some instances 2,3-
butanediol, lactate, butyrate, and butanol are also
produced in wild-type cells [9°°,27].

Furthermore, genetic manipulation of two acetogens,
Clostridium  ljungdahlii [28-31] and Clostridium sp.
MAceT113 [32,33], has been reported and the develop-
ment of improved genetic tools for Clostridia species
continues to advance rapidly [25°%,34]. Acetyl-CoA, the
central intermediate in the Wood-Ljungdahl pathway, is
an excellent building block for the production of a diver-
sity of commodities [9°°,25°°]. Thus, there is the potential
for redirecting carbon and electron flow toward the pro-
duction of more valuable products. For example, genetic
engineering of Clostridium sp. MAce'T'113 eliminated
genes essential for the production of acetate and ethanol
with the introduction of genes for acetone production,
yielding a strain that produced high titers of acetone in a
syngas reactor [33]. A strain of C. Jjungdahlii capable of
producing small amounts of butanol was created by

introducing required genes on a plasmid [28] and strains
of C. ljungdahlii in which genes were deleted to eliminate
the production of acetate and ethanol production have
been described [29].

Production of E-BCs with acetogens is not limited to
electrochemically generating H, or formate as an inter-
mediary electron carrier because a number of acetogens
are capable of electrosynthesis; directly accepting elec-
trons from electrode surfaces for carbon dioxide
reduction [4°%,5]. Biofilms of Sporomusa ovata accepted
electrons from a graphite cathode reducing carbon diox-
ide primarily to acetate, with the production of small
quantities of 2-oxobutyrate [4°°]. Recovery of electrons
consumed in these organic products was over 85%,
demonstrating the high efficiency expected for biocom-
modity production via the Wood-Ljungdahl pathway.
Evaluation of a diversity of potential cathode materials
demonstrated that simply providing positive charge at
the cathode surface could increase rates of electrosynth-
esis sevenfold [35°].

Other acetogens capable of electrosynthesis are:
additional Sporomusa species, Morella thermoacetica, and
several Clostridium species, including the genetically
tractable C. Jungdahlii [5]. The abundance of microbes
closely related to known Acetobacterium species attached
to graphite cathode material in a mixed-culture system
producing acetate suggested that microorganisms in this
genus might also be capable of electrosynthesis [19°°].
However, in pure culture Acetobacterium woodii was not
capable of electrosynthesis [5] and there was the possib-
ility that H, was being produced in the mixed culture
system [19°°].

C. l[jungdahlii is an early candidate as a chassis organism for
production of E-BCs, either with H; or electrosynthesis
because it can be genetically manipulated [29]. However,
basic features of the physiology of this organism that are
important for evaluating what metabolic pathways might
be feasible, such as mechanisms for energy conservation
[30] and mechanisms for electron transfer from electrodes
to cells [31], are only beginning to be explored.

Oxygen-reducing microorganisms

Another approach to E-BC production is to support the
growth of aerobic microorganisms with electrochemically
produced electron donors such as H;, formate, or ammo-
nia [13°,14°]. Ralstonia europea growing on electrochemi-
cally produced formate with oxygen as the electron
acceptor was engineered to produce small amounts of
isobutanol and 3-methyl-1-butanol [14°]. Ammonia pro-
duced electrochemically from nitrite served as the elec-
tron donor for growth of Nitrosomonas europaea, which
oxidized ammonia to nitrite with oxygen as the electron
acceptor and used carbon dioxide as its sole carbon source
to produce biomass [13°].
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However, aerobic microbial physiologies in which the
proportions of electrons consumed in oxygen reduction,
and carbon diverted to biomass, are high are inherently
inefficient for commodity production [36]. This contrasts
with the anaerobic systems described above which have
evolved physiologies with high flux (>90%) of electrons
directly to carbon dioxide reduction with the production
of organic compounds that are excreted from the cells. For
example, from the information provided [14°], it can be
calculated that less than 5% of the electrons consumed
during electrochemical production of isobutanol and
3-methyl-1-butanol with R. europea were recovered in
these products. High biomass production (OD ca. 2)
and less than 160 mg/l of products also suggest that most
of the carbon dioxide that was fixed was diverted to
biomass. In studies with N. europaea in which biomass
production was the goal, the energetic efficiency was less
than 5% [13°]. Additional inefficiencies in aerobic sys-
tems include reduction of oxygen at the cathode, which
can also produce deleterious reactive oxygen species
[14°]. In H,-based systems the reactivity of H, and ox-
ygen is an additional concern [13°].

Conclusions

Producing organic commodities from carbon dioxide with
microorganisms powered with electricity is a new con-
cept. There are very few published studies on this topic.
Although there are many potential advantages to the
E-BC approach, there are many uncertainties related to
scalability and commercial competitiveness. Anaerobic

Box 1 The search for electrotrophs and how they function

The concept of supporting microbial respiration with electrons
directly supplied from an electrode is in its infancy in comparison to
the decades of research on autotrophic electron donors such as Ha.
However, since the discovery in 2004 that Geobacter species could
directly accept electrons for the reduction of commonly considered
electron acceptors such as fumarate and nitrate [37], it has been
found that a wide diversity of microorganisms can access cathodes
as an electron donor for the reduction of a range of electron
acceptors. These include metals and chlorinated solvents, which
have applications in bioremediation, and protons for hydrogen
production [2,3,38°]. A number of additional pure cultures capable of
functioning as electrotrophs have been recently identified [39-43].

There are several potential mechanisms for electron transfer into
cells [38°]. Studies to date have focused on the reduction of fumarate
and have suggested that electron transfer into Shewanella
oneidensis employs the same outer-surface contacts as for electron
transfer from cells to electrodes [39], whereas electron transfer into
and out of G. sulfurreducens may proceed via different routes [44].
Strategies for energy conservation have been proposed but not
experimentally verified [2,38°]. Microorganisms that do not have a
native facility for electronically interacting with electrodes might be
turned into electrotrophs with amendments that enhance microbe-
electrode interactions [45,46°]. Further investigation of the diversity
and function of electrotrophs is likely to expand the options for
designing systems for producing commodities with electrical energy
as well as additional applications, such as bioremediation.

processes in which carbon dioxide serves as an electron
acceptor are expected to be more efficient than growing
microorganisms on electrochemically generated electron
donors with oxygen as the electron acceptor. However, it
is not yet clear whether directly providing electrons at an
electrode surface or generating H; or formate as the donor
for anaerobic respiration will be the more scalable process.
Lower energy inputs are required for direct electron
feeding because producing H; or formate requires lower
cathode potentials, but engineering large reactors with
high-density cathode arrays may be an engineering
challenge. Basic research into the poorly understood
mechanisms for electrode-to-microbe electron exchange
(Box 1) would make the engineering of direct electron
exchange strategies less empirical.
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