Biology's Regeneration Group: Randal Voss
Regeneration is one of the most tantalizing areas of biological research. How are some animals able to regrow body parts following injury? Why can't humans do the same thing? Can scientists learn the secrets that imbue certain animals with this amazing ability? Could that knowledge someday be used to develop new therapies to help people heal? Four professors in the Department of Biology — Randal Voss, Jeramiah Smith, Ann Morris, and Ashley Seifert — are undertaking the basic scientific research needed to begin to answer these and other questions. Each of them approaches the problem from a different angle, focusing on different aspects of regeneration, and using different vertebrate models. Randal Voss sequences the genome of salamanders, an amphibian group that veered off our common vertebrate path about 300 million years ago. Though we share many of the same genes, the salamander genome is massive compared to our own — about 10 times as large. Voss's research focuses on axolotls, an unusual type of salamander that lives wild only in one tiny part of Mexico. Unlike most salamanders, which undergo a metamorphosis from larva to adult, axolotls retain their juvenile form throughout their entire lifespan, a trait known as neotony or paedomorphism. But the main reason that axolotls are among the most-studied salamanders in the world is their amazing ability to regenerate a variety of body parts. "It’s hard to find a body part they can’t regenerate," Voss said. "Salamanders in general, and axolotls especially so. The limbs, the tail, the spinal cord — even half of their brain has been removed and shown to regenerate." Voss's research involves assembling a vast store of genetic data using RNA extracted from regenerated axolotl tissue. From this data, Voss will elaborate a model for how genes are turned on and off over very small timescales. This model will serve as a blueprint for other regeneration researchers to build from. Photography by: Dana Rogers