Skip to main content

Department of Biology Seminar

"Precision of Neurosteroid Provision in the Vertebrate Brain"

SelfieDr. Colin Saldanha

BIO:

Colin J Saldanha received his doctorate in Psychology from Columbia University, conducted postdoctoral research in Neuroendocrinology at UCLA and established his independent research program in the Dept. of Biological Sciences at Lehigh University in 2001. Here he was tenured and later promoted to full professor in 2011. He conducts research on how secreted signals such as steroids are delivered with spatial and temporal precision to targeted locations in the brain to modulate and orchestrate neurophysiology and complex behaviors. He is particularly curious about the pluripotent actions of estrogens on reproductive, aggressive, affiliative, and rewarding behaviors, as well as the modulation of spatial memory, sociality, and neuroprotection. His work has been supported by the National Institutes and Health and the National Science Foundation (NSF). He has published extensively including journals like Endocrine Reviews and Current Biology. He was awarded the Libsch Early Career Award (2003) and the Stabler Award for Excellence in Teaching (2006). Since 2011 he has re-established his research program at the Department of Neuroscience and the interdisciplinary Center for Behavioral Neuroscience at American University (AU). In this capacity he, along with others, have aided the considerable expansion of the natural sciences at this institution. Colin has served as Chair of the Biology Department at AU and as Chair of the Education Committee and Secretary for the Society for Behavioral Neuroendocrinology and is a Member of the BOD of the Federation of Associations in Behavioral and Brain Sciences. He has recently completed a rotation as Program Director and Expert in the Neural Systems Cluster of the Division of Integrative and Organismal Biology at the National Science Foundation.

Abstract:

Hormones like steroids modulate numerous behavioral endpoints, affect several peripheral and central targets, and are often synthesized in multiple tissues. The mechanisms whereby this modulation is achieved with temporal and spatial specificity remain unclear. 17-estradiol (E2) is made in ovaries, placenta, bone, adipose, and in the brain. Neuroestradiol is a potent mediator of a range of behaviors during development and adulthood. How is estradiol delivered to the right target, at the right time, and at the right concentration? Perhaps more importantly, how is it that multiple E2-dependent targets and behaviors aren’t modulated simultaneously? We have learned that aromatase (estrogen-synthase) can be induced in astrocytes following damage to the brain and is expressed at central synapses. Both mechanisms of estrogen provision confer spatial and temporal specificity on a lipophilic neurohormone with potential access to all cells and tissues. This talk will trace the progress in our understanding of astrocytic and synaptic aromatization in both in reactive astrocytes and at central synapses. The talk will end with relatively novel hypothesis regarding the role of neuroestradiol in the orchestration of species-specific behaviors.

Date:
Location:
THM 116

"Precision of Neurosteroid Provision in the Vertebrate Brain"

SelfieDr. Colin Saldanha

BIO:

Colin J Saldanha received his doctorate in Psychology from Columbia University, conducted postdoctoral research in Neuroendocrinology at UCLA and established his independent research program in the Dept. of Biological Sciences at Lehigh University in 2001. Here he was tenured and later promoted to full professor in 2011. He conducts research on how secreted signals such as steroids are delivered with spatial and temporal precision to targeted locations in the brain to modulate and orchestrate neurophysiology and complex behaviors. He is particularly curious about the pluripotent actions of estrogens on reproductive, aggressive, affiliative, and rewarding behaviors, as well as the modulation of spatial memory, sociality, and neuroprotection. His work has been supported by the National Institutes and Health and the National Science Foundation (NSF). He has published extensively including journals like Endocrine Reviews and Current Biology. He was awarded the Libsch Early Career Award (2003) and the Stabler Award for Excellence in Teaching (2006). Since 2011 he has re-established his research program at the Department of Neuroscience and the interdisciplinary Center for Behavioral Neuroscience at American University (AU). In this capacity he, along with others, have aided the considerable expansion of the natural sciences at this institution. Colin has served as Chair of the Biology Department at AU and as Chair of the Education Committee and Secretary for the Society for Behavioral Neuroendocrinology and is a Member of the BOD of the Federation of Associations in Behavioral and Brain Sciences. He has recently completed a rotation as Program Director and Expert in the Neural Systems Cluster of the Division of Integrative and Organismal Biology at the National Science Foundation.

Abstract:

Hormones like steroids modulate numerous behavioral endpoints, affect several peripheral and central targets, and are often synthesized in multiple tissues. The mechanisms whereby this modulation is achieved with temporal and spatial specificity remain unclear. 17-estradiol (E2) is made in ovaries, placenta, bone, adipose, and in the brain. Neuroestradiol is a potent mediator of a range of behaviors during development and adulthood. How is estradiol delivered to the right target, at the right time, and at the right concentration? Perhaps more importantly, how is it that multiple E2-dependent targets and behaviors aren’t modulated simultaneously? We have learned that aromatase (estrogen-synthase) can be induced in astrocytes following damage to the brain and is expressed at central synapses. Both mechanisms of estrogen provision confer spatial and temporal specificity on a lipophilic neurohormone with potential access to all cells and tissues. This talk will trace the progress in our understanding of astrocytic and synaptic aromatization in both in reactive astrocytes and at central synapses. The talk will end with relatively novel hypothesis regarding the role of neuroestradiol in the orchestration of species-specific behaviors.

Date:
Location:
THM 116

"Precision of Neurosteroid Provision in the Vertebrate Brain"

SelfieDr. Colin Saldanha

BIO:

Colin J Saldanha received his doctorate in Psychology from Columbia University, conducted postdoctoral research in Neuroendocrinology at UCLA and established his independent research program in the Dept. of Biological Sciences at Lehigh University in 2001. Here he was tenured and later promoted to full professor in 2011. He conducts research on how secreted signals such as steroids are delivered with spatial and temporal precision to targeted locations in the brain to modulate and orchestrate neurophysiology and complex behaviors. He is particularly curious about the pluripotent actions of estrogens on reproductive, aggressive, affiliative, and rewarding behaviors, as well as the modulation of spatial memory, sociality, and neuroprotection. His work has been supported by the National Institutes and Health and the National Science Foundation (NSF). He has published extensively including journals like Endocrine Reviews and Current Biology. He was awarded the Libsch Early Career Award (2003) and the Stabler Award for Excellence in Teaching (2006). Since 2011 he has re-established his research program at the Department of Neuroscience and the interdisciplinary Center for Behavioral Neuroscience at American University (AU). In this capacity he, along with others, have aided the considerable expansion of the natural sciences at this institution. Colin has served as Chair of the Biology Department at AU and as Chair of the Education Committee and Secretary for the Society for Behavioral Neuroendocrinology and is a Member of the BOD of the Federation of Associations in Behavioral and Brain Sciences. He has recently completed a rotation as Program Director and Expert in the Neural Systems Cluster of the Division of Integrative and Organismal Biology at the National Science Foundation.

Abstract:

Hormones like steroids modulate numerous behavioral endpoints, affect several peripheral and central targets, and are often synthesized in multiple tissues. The mechanisms whereby this modulation is achieved with temporal and spatial specificity remain unclear. 17-estradiol (E2) is made in ovaries, placenta, bone, adipose, and in the brain. Neuroestradiol is a potent mediator of a range of behaviors during development and adulthood. How is estradiol delivered to the right target, at the right time, and at the right concentration? Perhaps more importantly, how is it that multiple E2-dependent targets and behaviors aren’t modulated simultaneously? We have learned that aromatase (estrogen-synthase) can be induced in astrocytes following damage to the brain and is expressed at central synapses. Both mechanisms of estrogen provision confer spatial and temporal specificity on a lipophilic neurohormone with potential access to all cells and tissues. This talk will trace the progress in our understanding of astrocytic and synaptic aromatization in both in reactive astrocytes and at central synapses. The talk will end with relatively novel hypothesis regarding the role of neuroestradiol in the orchestration of species-specific behaviors.

Date:
Location:
THM 116

"Craniodental Covariation and the Evolution of Human Pregnancy"

SelfieDr. Tesla Monson | Monson Lab

BIO:

Dr. Tesla Monson is an Assistant Professor of Anthropology at Western Washington University where she runs the Primate Evolution Lab. Her lab’s research focuses on the evolution of skeletal variation, life history, and reproduction in extant and fossil mammals. Dr. Monson recently published the first methods for reconstructing prenatal growth rates in the fossil record, one of which relies exclusively on teeth. Dr. Monson earned her PhD in Integrative Biology at UC Berkeley (2017), which is where she first became interested in science communication and research. Since then, she has developed and hosted a series of sci-comm projects, ranging from a science talk radio program called The Graduates, to a Twitter series highlighting the influence of women in early Washington State history (Washington Women).

Abstract:

The vertebrate fossil record is comprised almost entirely of the remains of bones and teeth. It is thus a key goal for evolutionary biologists to extract as much information as possible from these anatomical remains through morphological investigation. My research has demonstrated that there are significant phenotypic correlations between many anatomical traits, as well as between craniodental morphology and life history. These correlations both constrain and enable evolution, leading to the morphological diversity and disparity that we see today. In this talk, I will discuss our new research using cranial and dental morphology to reconstruct prenatal growth rates in

the hominid fossil record. Prenatal growth, or how quickly a fetus grows in utero, varies widely across primate species with the highest rate in humans. We recently demonstrated that prenatal growth rates increased throughout the Pleistocene, reaching ‘human-like’ rates just under 1 million years ago, before the evolution of our species. Prenatal growth is also key to healthy pregnancy and delivery. I will end by presenting some of our ongoing and future research investigating prenatal growth, and the evolution of encephalization and body size in primates.

"Fossil teeth reveal how brains developed in utero over millions of years of human evolution-new research"

Watch the seminar here!

Date:
Location:
THM 116

"Craniodental Covariation and the Evolution of Human Pregnancy"

SelfieDr. Tesla Monson | Monson Lab

BIO:

Dr. Tesla Monson is an Assistant Professor of Anthropology at Western Washington University where she runs the Primate Evolution Lab. Her lab’s research focuses on the evolution of skeletal variation, life history, and reproduction in extant and fossil mammals. Dr. Monson recently published the first methods for reconstructing prenatal growth rates in the fossil record, one of which relies exclusively on teeth. Dr. Monson earned her PhD in Integrative Biology at UC Berkeley (2017), which is where she first became interested in science communication and research. Since then, she has developed and hosted a series of sci-comm projects, ranging from a science talk radio program called The Graduates, to a Twitter series highlighting the influence of women in early Washington State history (Washington Women).

Abstract:

The vertebrate fossil record is comprised almost entirely of the remains of bones and teeth. It is thus a key goal for evolutionary biologists to extract as much information as possible from these anatomical remains through morphological investigation. My research has demonstrated that there are significant phenotypic correlations between many anatomical traits, as well as between craniodental morphology and life history. These correlations both constrain and enable evolution, leading to the morphological diversity and disparity that we see today. In this talk, I will discuss our new research using cranial and dental morphology to reconstruct prenatal growth rates in

the hominid fossil record. Prenatal growth, or how quickly a fetus grows in utero, varies widely across primate species with the highest rate in humans. We recently demonstrated that prenatal growth rates increased throughout the Pleistocene, reaching ‘human-like’ rates just under 1 million years ago, before the evolution of our species. Prenatal growth is also key to healthy pregnancy and delivery. I will end by presenting some of our ongoing and future research investigating prenatal growth, and the evolution of encephalization and body size in primates.

"Fossil teeth reveal how brains developed in utero over millions of years of human evolution-new research"

Watch the seminar here!

Date:
Location:
THM 116

"Craniodental Covariation and the Evolution of Human Pregnancy"

SelfieDr. Tesla Monson | Monson Lab

BIO:

Dr. Tesla Monson is an Assistant Professor of Anthropology at Western Washington University where she runs the Primate Evolution Lab. Her lab’s research focuses on the evolution of skeletal variation, life history, and reproduction in extant and fossil mammals. Dr. Monson recently published the first methods for reconstructing prenatal growth rates in the fossil record, one of which relies exclusively on teeth. Dr. Monson earned her PhD in Integrative Biology at UC Berkeley (2017), which is where she first became interested in science communication and research. Since then, she has developed and hosted a series of sci-comm projects, ranging from a science talk radio program called The Graduates, to a Twitter series highlighting the influence of women in early Washington State history (Washington Women).

Abstract:

The vertebrate fossil record is comprised almost entirely of the remains of bones and teeth. It is thus a key goal for evolutionary biologists to extract as much information as possible from these anatomical remains through morphological investigation. My research has demonstrated that there are significant phenotypic correlations between many anatomical traits, as well as between craniodental morphology and life history. These correlations both constrain and enable evolution, leading to the morphological diversity and disparity that we see today. In this talk, I will discuss our new research using cranial and dental morphology to reconstruct prenatal growth rates in

the hominid fossil record. Prenatal growth, or how quickly a fetus grows in utero, varies widely across primate species with the highest rate in humans. We recently demonstrated that prenatal growth rates increased throughout the Pleistocene, reaching ‘human-like’ rates just under 1 million years ago, before the evolution of our species. Prenatal growth is also key to healthy pregnancy and delivery. I will end by presenting some of our ongoing and future research investigating prenatal growth, and the evolution of encephalization and body size in primates.

"Fossil teeth reveal how brains developed in utero over millions of years of human evolution-new research"

Watch the seminar here!

Date:
Location:
THM 116

"Craniodental Covariation and the Evolution of Human Pregnancy"

SelfieDr. Tesla Monson | Monson Lab

BIO:

Dr. Tesla Monson is an Assistant Professor of Anthropology at Western Washington University where she runs the Primate Evolution Lab. Her lab’s research focuses on the evolution of skeletal variation, life history, and reproduction in extant and fossil mammals. Dr. Monson recently published the first methods for reconstructing prenatal growth rates in the fossil record, one of which relies exclusively on teeth. Dr. Monson earned her PhD in Integrative Biology at UC Berkeley (2017), which is where she first became interested in science communication and research. Since then, she has developed and hosted a series of sci-comm projects, ranging from a science talk radio program called The Graduates, to a Twitter series highlighting the influence of women in early Washington State history (Washington Women).

Abstract:

The vertebrate fossil record is comprised almost entirely of the remains of bones and teeth. It is thus a key goal for evolutionary biologists to extract as much information as possible from these anatomical remains through morphological investigation. My research has demonstrated that there are significant phenotypic correlations between many anatomical traits, as well as between craniodental morphology and life history. These correlations both constrain and enable evolution, leading to the morphological diversity and disparity that we see today. In this talk, I will discuss our new research using cranial and dental morphology to reconstruct prenatal growth rates in

the hominid fossil record. Prenatal growth, or how quickly a fetus grows in utero, varies widely across primate species with the highest rate in humans. We recently demonstrated that prenatal growth rates increased throughout the Pleistocene, reaching ‘human-like’ rates just under 1 million years ago, before the evolution of our species. Prenatal growth is also key to healthy pregnancy and delivery. I will end by presenting some of our ongoing and future research investigating prenatal growth, and the evolution of encephalization and body size in primates.

"Fossil teeth reveal how brains developed in utero over millions of years of human evolution-new research"

Watch the seminar here!

Date:
Location:
THM 116

"Craniodental Covariation and the Evolution of Human Pregnancy"

SelfieDr. Tesla Monson | Monson Lab

BIO:

Dr. Tesla Monson is an Assistant Professor of Anthropology at Western Washington University where she runs the Primate Evolution Lab. Her lab’s research focuses on the evolution of skeletal variation, life history, and reproduction in extant and fossil mammals. Dr. Monson recently published the first methods for reconstructing prenatal growth rates in the fossil record, one of which relies exclusively on teeth. Dr. Monson earned her PhD in Integrative Biology at UC Berkeley (2017), which is where she first became interested in science communication and research. Since then, she has developed and hosted a series of sci-comm projects, ranging from a science talk radio program called The Graduates, to a Twitter series highlighting the influence of women in early Washington State history (Washington Women).

Abstract:

The vertebrate fossil record is comprised almost entirely of the remains of bones and teeth. It is thus a key goal for evolutionary biologists to extract as much information as possible from these anatomical remains through morphological investigation. My research has demonstrated that there are significant phenotypic correlations between many anatomical traits, as well as between craniodental morphology and life history. These correlations both constrain and enable evolution, leading to the morphological diversity and disparity that we see today. In this talk, I will discuss our new research using cranial and dental morphology to reconstruct prenatal growth rates in

the hominid fossil record. Prenatal growth, or how quickly a fetus grows in utero, varies widely across primate species with the highest rate in humans. We recently demonstrated that prenatal growth rates increased throughout the Pleistocene, reaching ‘human-like’ rates just under 1 million years ago, before the evolution of our species. Prenatal growth is also key to healthy pregnancy and delivery. I will end by presenting some of our ongoing and future research investigating prenatal growth, and the evolution of encephalization and body size in primates.

"Fossil teeth reveal how brains developed in utero over millions of years of human evolution-new research"

Watch the seminar here!

Date:
Location:
THM 116

"Human Origins and Dispersals: Fossil and Genomic Perspectives"

SelfieHugo Reyes-Centeno HEVA (Human Evolution & Virtual Anthropology Lab) EduceLab

Dr. Hugo Reyes-Centeno is an evolutionary anthropologist specializing on the emergence of modern human anatomy and behavior over the last million years. In addition, he conducts inter-disciplinary research on human biocultural diversity and the study of natural and cultural heritage worldwide. Prior to joining the University of Kentucky in 2020 as Assistant Professor of Anthropology, he served as Scientific Coordinator and co-founder of the Center for Advanced Studies “Words, Bones, Genes, Tools” at the University of Tübingen (Germany), where he also completed a dissertation in the Institute of Archaeological Science and the Senckenberg Centre for Human Evolution and Paleoenvironments. His research has appeared in Cell, PNAS, Journal of Human Evolution, and PLoS Genetics, among other venues. He has performed paleontological and archaeological fieldwork in France, Italy, Peru, the Philippines, and Spain. Currently, he serves as Co-PI of the NSF-funded EduceLab: Infrastructure for Next Generation Heritage Science.

Abstract: Despite consensus on the emergence of anatomically modern humans in Africa and their subsequent dispersal into the rest of the world, the mode and timing of these processes remain controversial topics. In addressing them, data on human anatomical and genomic variation have sometimes generated conflicting inferences. Therefore, approaches that consider both lines of evidence under a common theoretical framework are important for reconciling competing evolutionary models. In this talk, I highlight research that tests competing models of human dispersal out of Africa, which applies quantitative genetic and population genetic methods to anatomical and genomic data. I discuss the caveats of these conclusions, including the influence of admixture between modern humans and other hominins. Furthermore, I examine how these findings align with the known human fossil record and a growing inventory of ancient genomes from archaeological and paleontological contexts. Finally, I review how ongoing field and laboratory projects in Eastern Africa, Southeast Asia, and South America shed light on human evolution, adaptations, and dispersals.

Group Map
Date:
Location:
THM 116

"Human Origins and Dispersals: Fossil and Genomic Perspectives"

SelfieHugo Reyes-Centeno HEVA (Human Evolution & Virtual Anthropology Lab) EduceLab

Dr. Hugo Reyes-Centeno is an evolutionary anthropologist specializing on the emergence of modern human anatomy and behavior over the last million years. In addition, he conducts inter-disciplinary research on human biocultural diversity and the study of natural and cultural heritage worldwide. Prior to joining the University of Kentucky in 2020 as Assistant Professor of Anthropology, he served as Scientific Coordinator and co-founder of the Center for Advanced Studies “Words, Bones, Genes, Tools” at the University of Tübingen (Germany), where he also completed a dissertation in the Institute of Archaeological Science and the Senckenberg Centre for Human Evolution and Paleoenvironments. His research has appeared in Cell, PNAS, Journal of Human Evolution, and PLoS Genetics, among other venues. He has performed paleontological and archaeological fieldwork in France, Italy, Peru, the Philippines, and Spain. Currently, he serves as Co-PI of the NSF-funded EduceLab: Infrastructure for Next Generation Heritage Science.

Abstract: Despite consensus on the emergence of anatomically modern humans in Africa and their subsequent dispersal into the rest of the world, the mode and timing of these processes remain controversial topics. In addressing them, data on human anatomical and genomic variation have sometimes generated conflicting inferences. Therefore, approaches that consider both lines of evidence under a common theoretical framework are important for reconciling competing evolutionary models. In this talk, I highlight research that tests competing models of human dispersal out of Africa, which applies quantitative genetic and population genetic methods to anatomical and genomic data. I discuss the caveats of these conclusions, including the influence of admixture between modern humans and other hominins. Furthermore, I examine how these findings align with the known human fossil record and a growing inventory of ancient genomes from archaeological and paleontological contexts. Finally, I review how ongoing field and laboratory projects in Eastern Africa, Southeast Asia, and South America shed light on human evolution, adaptations, and dispersals.

Group Map
Date:
Location:
THM 116