Skip to main content

Department of Biology Seminar

"Phased, Secondary siRNAs in Plant Reproduction and Other Pathways"

SelfieDr. Blake Meyers | Meyers Lab

BIO: 

Blake Meyers is a Member & Principal Investigator at the Donald Danforth Plant Science Center in St.

Louis, and he is a Professor in the Division of Plant Science and Technology at the University of

Missouri - Columbia. He formerly held the Edward F. and Elizabeth Goodman Rosenberg

professorship at the University of Delaware, where his research group was from 2002 to 2015. He

was elected as a Fellow of the American Association for the Advancement of Science (AAAS) in 2012,

and a Fellow of the American Society of Plant Biologists (ASPB) in 2017, the same year he was

awarded the Charles Albert Shull Award by the ASPB for outstanding investigations in the field of

plant biology. He was elected to the US National Academy of Sciences in 2022. After serving on the

editorial board since 2008, Blake became the Editor-in-Chief of The Plant Cell in January 2020. Work

in his lab addresses the biological functions, biogenesis, genomic impact, and evolution of small

RNAs in diverse plant species, using combination of genomic and molecular genetics approaches,

with a focus on phased, secondary siRNAs (“phasiRNAs”).



He received his undergraduate degree in biology from the University of Chicago in 1992, and

working with Prof. Richard Michelmore at UC Davis, was awarded M.S. and Ph.D. degrees in genetics in 1995 and 1998, respectively. After that, he did a postdoc with Prof. Michele Morgante at DuPont Crop Genetics, working on maize genomics for 2 years before returning to Prof. Michelmore’s group at UC Davis in 2000 to do a 2nd postdoc on Arabidopsis disease resistance. In 2002, Blake started his

own research group at the University of Delaware. He was the chair of the Department of Plant & Soil Sciences at the University of Delaware from 2009 to 2015.

Abstract:

In plants, 21 or 22-nt miRNAs or siRNAs typically negatively regulate target genes through mRNA cleavage or translational inhibition. Heterochromatic or Pol IV are 24-nt and function to maintain heterochromatin and silence transposons. Phased “secondary” siRNAs (phasiRNAs) are generated from mRNAs targeted by a typically 22-nt “trigger” miRNA, and are produced as either 21- or 24-mers via distinct pathways. Our prior work in maize and rice demonstrated the temporal and spatial distribution of two sets of “reproductive phasiRNAs”, which are extraordinarily enriched in the male germline of the grasses. These two sets are the 21-nt (pre-meiotic) and 24-nt (meiotic) siRNAs. Both classes are produced from long, non-coding RNAs, generated by hundreds to thousands of loci, depending on the species. These phased siRNAs show striking similarity to mammalian piRNAs in terms of their abundance, distribution, distinctive staging, and timing of accumulation, but they have independent evolutionary origins. The functions for these small RNAs in plants remain poorly characterized. I will describe our recent work investigating the functions of plant phasiRNAs and their roles in modulating traits of agronomic importance in plants, including male fertility, as well as novel applications of phasiRNAs such as those generated from transplastomic plants.

 

Date:
Location:
Plant Science Building-Cameron Williams Auditorium

"Phased, Secondary siRNAs in Plant Reproduction and Other Pathways"

SelfieDr. Blake Meyers | Meyers Lab

BIO: 

Blake Meyers is a Member & Principal Investigator at the Donald Danforth Plant Science Center in St.

Louis, and he is a Professor in the Division of Plant Science and Technology at the University of

Missouri - Columbia. He formerly held the Edward F. and Elizabeth Goodman Rosenberg

professorship at the University of Delaware, where his research group was from 2002 to 2015. He

was elected as a Fellow of the American Association for the Advancement of Science (AAAS) in 2012,

and a Fellow of the American Society of Plant Biologists (ASPB) in 2017, the same year he was

awarded the Charles Albert Shull Award by the ASPB for outstanding investigations in the field of

plant biology. He was elected to the US National Academy of Sciences in 2022. After serving on the

editorial board since 2008, Blake became the Editor-in-Chief of The Plant Cell in January 2020. Work

in his lab addresses the biological functions, biogenesis, genomic impact, and evolution of small

RNAs in diverse plant species, using combination of genomic and molecular genetics approaches,

with a focus on phased, secondary siRNAs (“phasiRNAs”).



He received his undergraduate degree in biology from the University of Chicago in 1992, and

working with Prof. Richard Michelmore at UC Davis, was awarded M.S. and Ph.D. degrees in genetics in 1995 and 1998, respectively. After that, he did a postdoc with Prof. Michele Morgante at DuPont Crop Genetics, working on maize genomics for 2 years before returning to Prof. Michelmore’s group at UC Davis in 2000 to do a 2nd postdoc on Arabidopsis disease resistance. In 2002, Blake started his

own research group at the University of Delaware. He was the chair of the Department of Plant & Soil Sciences at the University of Delaware from 2009 to 2015.

Abstract:

In plants, 21 or 22-nt miRNAs or siRNAs typically negatively regulate target genes through mRNA cleavage or translational inhibition. Heterochromatic or Pol IV are 24-nt and function to maintain heterochromatin and silence transposons. Phased “secondary” siRNAs (phasiRNAs) are generated from mRNAs targeted by a typically 22-nt “trigger” miRNA, and are produced as either 21- or 24-mers via distinct pathways. Our prior work in maize and rice demonstrated the temporal and spatial distribution of two sets of “reproductive phasiRNAs”, which are extraordinarily enriched in the male germline of the grasses. These two sets are the 21-nt (pre-meiotic) and 24-nt (meiotic) siRNAs. Both classes are produced from long, non-coding RNAs, generated by hundreds to thousands of loci, depending on the species. These phased siRNAs show striking similarity to mammalian piRNAs in terms of their abundance, distribution, distinctive staging, and timing of accumulation, but they have independent evolutionary origins. The functions for these small RNAs in plants remain poorly characterized. I will describe our recent work investigating the functions of plant phasiRNAs and their roles in modulating traits of agronomic importance in plants, including male fertility, as well as novel applications of phasiRNAs such as those generated from transplastomic plants.

 

Date:
Location:
Plant Science Building-Cameron Williams Auditorium

"Cells and Molecules for Touch, Pain and Interoception"

Dr. Alexander Chesler | Chesler Lab

Chesler
Bio
Dr. Chesler received his degrees from Bard College (B.A., 1995) and Columbia University (Ph.D., 2005). His graduate study, in the laboratory of Dr. Stuart Firestein, was focused on the function and development of olfactory sensory neurons. He did his postdoctoral training in the laboratory of Dr. David Julius at the University of California, San Francisco, where he combined physiological, anatomical, and behavioral approaches to study the pharmacology of somatosensory neurons. He joined the NIH intramural pain program (NCCIH) in 2013 where his laboratory now employs multidisciplinary approaches to study how sensory stimuli (such temperature, touch, and environmental irritants) are detected and encoded by the somatosensory system.

Watch the seminar here!

Date:
Location:
THM 116

"Cells and Molecules for Touch, Pain and Interoception"

Dr. Alexander Chesler | Chesler Lab

Chesler
Bio
Dr. Chesler received his degrees from Bard College (B.A., 1995) and Columbia University (Ph.D., 2005). His graduate study, in the laboratory of Dr. Stuart Firestein, was focused on the function and development of olfactory sensory neurons. He did his postdoctoral training in the laboratory of Dr. David Julius at the University of California, San Francisco, where he combined physiological, anatomical, and behavioral approaches to study the pharmacology of somatosensory neurons. He joined the NIH intramural pain program (NCCIH) in 2013 where his laboratory now employs multidisciplinary approaches to study how sensory stimuli (such temperature, touch, and environmental irritants) are detected and encoded by the somatosensory system.

Watch the seminar here!

Date:
Location:
THM 116

"Cells and Molecules for Touch, Pain and Interoception"

Dr. Alexander Chesler | Chesler Lab

Chesler
Bio
Dr. Chesler received his degrees from Bard College (B.A., 1995) and Columbia University (Ph.D., 2005). His graduate study, in the laboratory of Dr. Stuart Firestein, was focused on the function and development of olfactory sensory neurons. He did his postdoctoral training in the laboratory of Dr. David Julius at the University of California, San Francisco, where he combined physiological, anatomical, and behavioral approaches to study the pharmacology of somatosensory neurons. He joined the NIH intramural pain program (NCCIH) in 2013 where his laboratory now employs multidisciplinary approaches to study how sensory stimuli (such temperature, touch, and environmental irritants) are detected and encoded by the somatosensory system.

Watch the seminar here!

Date:
Location:
THM 116

"Cells and Molecules for Touch, Pain and Interoception"

Dr. Alexander Chesler | Chesler Lab

Chesler
Bio
Dr. Chesler received his degrees from Bard College (B.A., 1995) and Columbia University (Ph.D., 2005). His graduate study, in the laboratory of Dr. Stuart Firestein, was focused on the function and development of olfactory sensory neurons. He did his postdoctoral training in the laboratory of Dr. David Julius at the University of California, San Francisco, where he combined physiological, anatomical, and behavioral approaches to study the pharmacology of somatosensory neurons. He joined the NIH intramural pain program (NCCIH) in 2013 where his laboratory now employs multidisciplinary approaches to study how sensory stimuli (such temperature, touch, and environmental irritants) are detected and encoded by the somatosensory system.

Watch the seminar here!

Date:
Location:
THM 116

"Cells and Molecules for Touch, Pain and Interoception"

Dr. Alexander Chesler | Chesler Lab

Chesler
Bio
Dr. Chesler received his degrees from Bard College (B.A., 1995) and Columbia University (Ph.D., 2005). His graduate study, in the laboratory of Dr. Stuart Firestein, was focused on the function and development of olfactory sensory neurons. He did his postdoctoral training in the laboratory of Dr. David Julius at the University of California, San Francisco, where he combined physiological, anatomical, and behavioral approaches to study the pharmacology of somatosensory neurons. He joined the NIH intramural pain program (NCCIH) in 2013 where his laboratory now employs multidisciplinary approaches to study how sensory stimuli (such temperature, touch, and environmental irritants) are detected and encoded by the somatosensory system.

Watch the seminar here!

Date:
Location:
THM 116

"Leveraging Animal Behavioral Interactions to Learn About Cognition & Social Dynamics"

Selfie

 

 

Dr. Elizabeth Hobson | Hobson Lab

Bio
Dr. Hobson received her PhD from New Mexico State University and was awarded two independent postdoctoral fellowships, the first at NIMBioS (the National Institute for Mathematical and Biological Synthesis) and the second at the Santa Fe Institute. She started her lab at the University of Cincinnati in Fall 2019 and is currently an Assistant Professor.

Abstract:
In many social species individuals create their social worlds through interaction decisions and are then subject to and constrained by these social constructs, which can affect an individual’s future actions. Understanding how much individuals “know” about their social worlds is critical in understanding these potential feedbacks. However, it is difficult to determine how much information individuals have about the social structures in which they live. In this talk, I summarize several ways my group is addressing these questions by combining empirical experiments with computational approaches to provide insight into cognition through social decisions. I highlight new work on parakeet aggression and dominance hierarchies to illustrate this approach. I show evidence that parakeet rank is unlikely due to individual characteristics and that group-level social dominance patterns can be plastic and can respond to group membership changes. Finally, I show how parallel or related experiments can allow for comparative analyses across species. These approaches, and a taxonomically broad perspective, provide new opportunities to investigate the effect of social information on individual behavior within conflict, and has the potential to provide rigorous evidence for the evolutionary patterns underlying social cognition.

Watch the seminar here!

 

Date:
Location:
THM 116

"Leveraging Animal Behavioral Interactions to Learn About Cognition & Social Dynamics"

Selfie

 

 

Dr. Elizabeth Hobson | Hobson Lab

Bio
Dr. Hobson received her PhD from New Mexico State University and was awarded two independent postdoctoral fellowships, the first at NIMBioS (the National Institute for Mathematical and Biological Synthesis) and the second at the Santa Fe Institute. She started her lab at the University of Cincinnati in Fall 2019 and is currently an Assistant Professor.

Abstract:
In many social species individuals create their social worlds through interaction decisions and are then subject to and constrained by these social constructs, which can affect an individual’s future actions. Understanding how much individuals “know” about their social worlds is critical in understanding these potential feedbacks. However, it is difficult to determine how much information individuals have about the social structures in which they live. In this talk, I summarize several ways my group is addressing these questions by combining empirical experiments with computational approaches to provide insight into cognition through social decisions. I highlight new work on parakeet aggression and dominance hierarchies to illustrate this approach. I show evidence that parakeet rank is unlikely due to individual characteristics and that group-level social dominance patterns can be plastic and can respond to group membership changes. Finally, I show how parallel or related experiments can allow for comparative analyses across species. These approaches, and a taxonomically broad perspective, provide new opportunities to investigate the effect of social information on individual behavior within conflict, and has the potential to provide rigorous evidence for the evolutionary patterns underlying social cognition.

Watch the seminar here!

 

Date:
Location:
THM 116

"Leveraging Animal Behavioral Interactions to Learn About Cognition & Social Dynamics"

Selfie

 

 

Dr. Elizabeth Hobson | Hobson Lab

Bio
Dr. Hobson received her PhD from New Mexico State University and was awarded two independent postdoctoral fellowships, the first at NIMBioS (the National Institute for Mathematical and Biological Synthesis) and the second at the Santa Fe Institute. She started her lab at the University of Cincinnati in Fall 2019 and is currently an Assistant Professor.

Abstract:
In many social species individuals create their social worlds through interaction decisions and are then subject to and constrained by these social constructs, which can affect an individual’s future actions. Understanding how much individuals “know” about their social worlds is critical in understanding these potential feedbacks. However, it is difficult to determine how much information individuals have about the social structures in which they live. In this talk, I summarize several ways my group is addressing these questions by combining empirical experiments with computational approaches to provide insight into cognition through social decisions. I highlight new work on parakeet aggression and dominance hierarchies to illustrate this approach. I show evidence that parakeet rank is unlikely due to individual characteristics and that group-level social dominance patterns can be plastic and can respond to group membership changes. Finally, I show how parallel or related experiments can allow for comparative analyses across species. These approaches, and a taxonomically broad perspective, provide new opportunities to investigate the effect of social information on individual behavior within conflict, and has the potential to provide rigorous evidence for the evolutionary patterns underlying social cognition.

Watch the seminar here!

 

Date:
Location:
THM 116